Membrane poration by antimicrobial peptides combining atomistic and coarse-grained descriptions.

نویسندگان

  • Andrzej J Rzepiela
  • Durba Sengupta
  • Nicolae Goga
  • Siewert J Marrink
چکیده

Antimicrobial peptides (AMPs) comprise a large family of peptides that include small cationic peptides, such as magainins, which permeabilize lipid membranes. Previous atomistic level simulations of magainin-H2 peptides show that they act by forming toroidal transmembrane pores. However, due to the atomistic level of description, these simulations were necessarily limited to small system sizes and sub-microsecond time scales. Here, we study the long-time relaxation properties of these pores by evolving the systems using a coarse-grain (CG) description. The disordered nature and the topology of the atomistic pores are maintained at the CG level. The peptides sample different orientations but at any given time, only a few peptides insert into the pore. Key states observed at the CG level are subsequently back-transformed to the atomistic level using a resolution-transformation protocol. The configurations sampled at the CG level are stable in the atomistic simulation. The effect of helicity on pore stability is investigated at the CG level and we find that partial helicity is required to form stable pores. We also show that the current CG scheme can be used to study spontaneous poration by magainin-H2 peptides. Overall, our simulations provide a multi-scale view of a fundamental biophysical membrane process involving a complex interplay between peptides and lipids.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dual Action of BPC194: A Membrane Active Peptide Killing Bacterial Cells

Membrane active peptides can perturb the lipid bilayer in several ways, such as poration and fusion of the target cell membrane, and thereby efficiently kill bacterial cells. We probe here the mechanistic basis of membrane poration and fusion caused by membrane-active, antimicrobial peptides. We show that the cyclic antimicrobial peptide, BPC194, inhibits growth of Gram-negative bacteria and ru...

متن کامل

Improving Internal Peptide Dynamics in the Coarse-Grained MARTINI Model: Toward Large-Scale Simulations of Amyloid- and Elastin-like Peptides

We present an extension of the coarse-grained MARTINI model for proteins and apply this extension to amyloid- and elastin-like peptides. Atomistic simulations of tetrapeptides, octapeptides, and longer peptides in solution are used as a reference to parametrize a set of pseudodihedral potentials that describe the internal flexibility of MARTINI peptides. We assess the performance of the resulti...

متن کامل

Multiscale simulations of the antimicrobial peptide maculatin 1.1: water permeation through disordered aggregates.

The antimicrobial peptide maculatin 1.1 (M1.1) is an amphipathic α-helix that permeabilizes lipid bilayers. In coarse-grained molecular dynamics (CG MD) simulations, M1.1 has previously been shown to form membrane-spanning aggregates in DPPC bilayers. In this study, a simple multiscale methodology has been applied to allow sampling of important regions of the free energy surface at higher resol...

متن کامل

The MARTINI Coarse-Grained Force Field: Extension to Proteins.

Many biologically interesting phenomena occur on a time scale that is too long to be studied by atomistic simulations. These phenomena include the dynamics of large proteins and self-assembly of biological materials. Coarse-grained (CG) molecular modeling allows computer simulations to be run on length and time scales that are 2-3 orders of magnitude larger compared to atomistic simulations, pr...

متن کامل

pH-dependent coarse-grained model of peptides

We propose the first, to our knowledge, coarse-grained modeling strategy for peptides where the effect of changes of the pH can be efficiently described. The idea is based on modeling the effects of the pH value on the main driving interactions. We use reference data from atomistic simulations and experimental databases and transfer its main physical features to the coarse-grained resolution ac...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Faraday discussions

دوره 144  شماره 

صفحات  -

تاریخ انتشار 2010